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A Study on Free Vibration of a Spinning Disk

Jintai Chung*, Nam-Chcl Kang** and Jang Moo Lee***
( Received March 1, /995)

Without a logical jump. we have derived the governing equation for free vibration of a

spinning circular disk by using the variational formulation based upon the KirchhotT plate

theory and von Karman strain one. It has been found during the derivation that the governing

equation is theoretically valid under the assumption that in plane deflections arc steady and

axisymmetric, and that internal forces are linearized while the strains remain nonlinear. The

natural frequencies and the critical speeds of a freely spinning disk are obtained approximately

and their dependencies on the spinning speed, mode number, and natural frequency of the

stationary disk are analyzed.
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1. Introduction

Vibrations and stability of spinning circular

disks have been continually studied and discussed

for a long time since Lamb and Southwell

(Lamb. 1921) initiated the study, because their

application area has not only been widen from a

circular saw to computer floppy/hard disks but

also the problems are fascinating themselves with

respect to physical nature. Early studies put a

focus on free vibrations and critical speeds of

flexible spinning disks (Mote. 1965, Eversman.

1969, Adams. 1987). Researches on circular disks

moved toward the responses and stability of sta­

tionary disks with moving or rotating loads: e. g.,

Mote, 1970 and Shen, 1993. On the other hand,

practical problems such as a guided circular saw

and a head-disk interface in a computer hard

disk became popular topics in industries. many

researches have been carried out on the dynamic

responses and stability of spinning disks with a

transverse load system (I wan, 1976, Benson, 1978,
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Hutton. 19R7. Ono. 1991. Chen, 1992).

When the dynamic characteristics of spinning

dl'.ks were ana lyzed in most of previous studies

(e. g., lwa n, 1976. Henson. 1977. Hutton. 19S7

and Adams. 1987). the governing equation for the

transverse deflection (or out of plane deflect.or.)

of the disks was derived by adding the inen ia]

term III the Kirchhoff plate equation and then

using a transformation from the rotating coordi­

nate system to the space fixed coord inate system

However, even if the resultant governing equation

is correct, this approach is somewhat inappropri­

ate because it seems that the coord inate

transformation results in different governing

equations. Accepting this approach makes a

mistake to assert that the system characteristics. i.

e.. the eigenvalues ofa spinning disk depend upon

the coordinate system to be used. Probably for

this reason, it seems that Mote studied stationary

circular disks with moving loads instead of spin­

ning circular ones with stationary loads (Mote,

1965 and 1970).

Without loss of generality. in this study, the

governing equation is derived from the var­

iational formulation based on the Kirchhoff plate

theory and von Karman strain theory. In addi­

tion, we scrutinize assumptions including linear­

izations which are used in driving the equations.
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where It" III! and liz are the displacements at an

arbitrary point inside the plate in the 1', e and

z·directions, respectively, while 11r, 110 and u: are

the displacements of a point on the middle surface

of the plate. If a transverse load is not applied on

the disk, it is plausible to assume that the in

-plane deflections are steady and axisymmetric.

The assumption reduces the in-plane displace­

ments to

When the Galerkin approximation is applied to

obtain the eigenvalue problem, in order to reduce

calculation complexity, we use the zero nodal

circle modes which are chosen as simple compari­

son functions of the radial coordinate. Moreover,

approximate calculation of the natural fre­

quencies and critical speeds is presented without

the eigenvalue search of numerical analyses.

Finally, dependency of the natural frequencies

and critical speeds on the spinning speed and

radial modes is also studied.

2. Derivation of the Governing
Equation

110(1', (), z, t)

niJ ( 1', (), I) -2 rJI(j;~;//j2

u, (r, (), z, t) = I( ( 1', (), I)

a.i». e, I)=u(y)

1111 ( 1', O, t) ~-,,()
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(4)
(5)
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(9)

OilL r;~z) (8)
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which means that the radial displacement IS a

function of only the radial coordinate and that

there is no circumferential displacement. Many

studies adopted the governing equation which

was derived using the assumption that the in

plane deflection is steady and axisymmetric. even

in case that a transverse load is applied to the

spinning disk. Strictly speaking, however, the in

-plane deflection is no longer steady and axisym­

metric when the spinning disk has a transverse

load. Since a transverse load breaks steady state

and axisyrnmetricity, the in-plane displacements

given by Eqs. (4) and (5) may not be valid any

longer in this case. Therefore, it is reasonable that

the assumption is used in case of a freely spinning

disk without a transverse load.

Considering geometric nonlinearity, this study

uses the simplified von Karman strain theory

which may be expressed as the following non­

linear displacement strain relations:

Since the disk is typically thin, the stresses a..
o., and (foz are assumed negligible, i. e.,

(I)

CI.;.,.:__.--4----+-L-- .. X

y

1t,(I', (), Z, I)

. au, (I', () t)
=17,(1',0, t)-z ········-oi·;··

The disk, as shown in Fig. I, is fixed at the

inner radius a and free at the outer radius h ; the

material of the disk is isotropic and elastic; the

thickness and the rotating speed of the disk are II
and .Q, respectively. The X- Y coordinate system

is fixed in space while the vectors Cr and C,J are

rotating with the disk. Hence the coordinate () is

measured with respect to the space-fixed coordi­

nate system.

The Kirchhoff plate theory gives us the follow­

ing equations which define the relation between

the displacements:

Fig. 1 Configuration of a spinning disk. For a homogeneous, elastic and Hookean
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material, the stress-strain relations are given by

U =+1(QrE- r + QeE e+ o.,:'0- u,«.

-- M8X&~ M,eXre) dA (14)

(16)

( 17)

( 18)

( 19)

v= v-zlJf

T =1..plzl c- vdA2 A

where

this case the in-plane stresses do not have

any influence on the out-of-plane deflection.

2. When only the internal forces are linearized,

the in-plane deflection are coupled with the

out-of--plane deflection so the in-plane stres­

ses have an influence on the out-of-plane

deflection. However, the governing equation

of the in-plane deflection is expressed in

terms of only the in-plane displacement and

it can be easily solved. This benefit leads to

the most wide use of the governing equations

derived by using this linearization.

3. When none of them are linearized, the equa­

tions of the in-plane and out-of-plane

deflections become totally coupled nonlinear

differentia! equations. They should be solved

by numerical approaches which are very

cumbersome; hence, we circumvent further

discussion on it in this study.

More detailed investigation on the first and

second cases is given the next section. First of all,

we derive the governing equations using the sec­

ond case of linearization.

The kinetic energy of the spinning disk is

required to obtain the governing equations by

using Hamilton's principle. The velocity of an

arbitrary point shown in Fig. I can be denoted by

Since the height of disk IS small, the kinetic

energy of the spinning disk may be given by

where e is the density of the disk. When

calculating the kinetic energy expressed in Eq.

(19). we neglect the higher-order nonlinear terms

and we use the fact that It is much smaller than r.

In order to obtain the governing equations, we

( I I )

(10)

(12)

( 15)O, rOz= r ,

E
6r8=-1 +vc ro

C,=.E,-ZX' 1
1

h / 2

Q,= o.de
-h12 ['

h/2Mi=1. zo.dz
- hi2

(t is noted that the strains E" E 8 and E T8 are

nonlinear functions of the displacements while

the curvature changes x-, x; and x,o are linear

functions. Similarly, the internal forces Q" Q&
and Q,e are nonlinear functions while the internal

moments M" iJ.I" and M,: are linear functions.

Linearizations of the strains or internal forces

have a great effect on the governing equations and

their solutions. We consider here three cases

which seem physically meaningful.

1. When both the strains and internal forces

are linearized, the governing equation of the

in-plane deflection is completely decoupled

with that of the out-of-plane deflection. In

where E is Young's modulus and v is Pois­

son's ratio.

Based on the above assumptions, the strain

energy denoted by U is represented by

U=+fv(6Tcr+6ec6+26Tecre)dV (13)

where V is the volume of the disk. Integrating

the term in the parentheses of Eq. (13) from ~ hi
2 to 1z12 with respect to z, the strain energy can be
rewritten by

where A is the area of the disk; E" E e and E re

are the strains at the middle surface; x" X8 and x,v
are the curvature changes of the deflected middle

surface; Q" Qe and Qro are the internal forces per

unit length of the middle surface; M" Me and M,;
are the internal moments per unit length of the

middle surface:
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use Hamilton's principle which is expressed by verse displacement as

f '
2

o (T--U)dt=O
II

(20)
N

W ( r, 0, t) = 2: [C" ( t )cos nO+ Sn (t) sin
J/:::oO

where

3. Analysis of Free Vibration of the
Spinning Disk

(28)

(31)

where

-2 (F 1 d 1/
[7"=r/tX +',:r!r -7£

For simplicity of calculation, the function may

be normalized by the following condition:

where sW n is the natural frequency of the n
nodal diameter mode when the disk is stationary

or Q = 0; an and (3" are nondimensional pararne-

Rn=.1E" =0 at r=a (29)
dr

-!t~ ([7;,R,,) - (,I ,)~:(~~-~)~o)
.1'<..Rn+J~(.1H.TI. __ Jl28-!,-)=0

dr" r dr r
at r=b (30)

where n is the number of nodal diameters and

N is the total number of nodal diameters to be

used in Galerkin approximation. Using Eq. (28),

the corresponding boundary conditions are

reduced to

where 1('", Z('n and 3('1/ are to be determined by

the boundary conditions Eq. (30) and the nor­

malization condition Eq. (32). Note that R",
given in Eq. (33), automatically satisfies the

geometric boundary conditions of Eq. (29).

After multiplying the both sides of Eq. (22) by

(cos nO) R" or (sin Jl(j) Hn , integrating it over

the area .A and using the orthogonal properties of

cosine and sine functions as well as the normali­

zation condition, we can obtain the following

discrete equations:

en +2nQS" + [sw~- Q2(n 2

-- a,,- n 2 (31/ ) ]C,,=O, n=O, I, "', N (34)

s.: 2nQCI/ + [sw;," ,Q2 (n 2

--an-' n 2 (3n)] S " c,= 0, n=l, 2, "', N (35)

HPhlhmrdr=L n'=O, I, "', N (32)

Moreover, R" is assumed as the following

comparison function:

R,,(r) =,,'1l(r--a)2+ zcl/(r--a)3
+3('I/(r--a)4 (33)

(21 )

(26)

(22)

(27)

cr = D-a~:[72 It' -,~~Oro..

occMr=O at r=b

where t1 and t2 are arbitrary times. From Eq.

(20), the governing equations are obtained as

dq-"- +Jl.!:'=-!:l!L = -- I'
ell' I'

(
iJZW iJ2w 2iJZW)

ph 'Bt Z + 2QiJtiJe+ Q a02

4 Q2[ a ( aw)+ [)[7 W - ph"ar rqrar
+-r~O( a» ;~~-)]=O

in which Qi'" and Qf" are the linearized inter­

nal forces of Qr and Qe, respectively. The bound­

ary conditions are given by

alii 'u= w=~"=O at r=aar

It is noted that Eq. (21) contains only the in

-plane displacement. Therefore, using the bound­

ary conditions given in Eq. (26) and (27), Eq.

(21) can be easily solved with a closed form by

Hutton.(1987)

The Galerkin method is used in this study to

investigate the transverse free vibration of the

spinning disk. Since the natural frequencies of the

stationary disk for all modes with one or more

nodal circles are greater than those of modes with

zero nodal circles and up to three or four nodal

diameters, the present analysis includes only

modes with zero nodal ci rcles (I wan, 1976).

Based on this assumption, we express the trans-



142 Jintai Chung, Nam-Chol Kang and lang Moo Lee

nal matrix, and x is a (2N +1) X 1 vector expres­

sed as

ters related with the in-plane forces:

[
(b ] li2

sWn= lfD Ja (ft~R,,) Rnrdr)

1
b

d ( dR,,)a = - noh - r(j -.- R dr
n a dr r dr n

16 RZ
/3n = noh a.-"dr

a r

(36)

(37)

(38)

x={Yo, Yb "', Y.v}T

in which

Yo={Co}, y"={C,,, S',,},
1/= 1,2, "', N

(41 )

(42)

in which

rt~=rt7,rt~ (39)

The discrete equations defined by Eqs. (34)

and (35) can be written in a matrix-vector form
of

The eigenvalue problem of Eq. (40) results in

the characteristic equation which is factored as

the following:

det (52 I + sA + B)
=det(wo)det(wl)···det(wN) = 0 (43)

x+Ax+Bx=O (40)

where A is a (2N + 1) X (2N +1) skew-sym­

metric matrix, B is a (2N +]) X (2N +1) diago-

where

(44)

2 2 QZ ( 2 2/3 )
[
s +sWn- n -an-n nw-

n :: -2nQs
2nQs ] .. _ I 2 ." :v

2 2 2 2 2 ~. ,II - , , '.0-
S +sWn-Q (II (i,,-n 13,,)

(45)

If n2- (in - 1/2/371 is equal to zero or less than

zero, there exists no critical speed. Once we know

the values of sWn, an and (371' the natural fre­

quencies and the critical speeds become functions

of Q. Therefore, there is no need to calculate the

eigenvalues with numerical approaches. See the

natural frequencies defined in Eqs. (46) and (47)

Since the characteristic equation, as shown in

Eq. (43), is factored into simple equations, the

natural frequencies can be expressed as

fW" = I l;w;l+ Q2 (a;,+112/3,, ) + nQ I
11=0, I, "', N (46)

rW" = I ;;-;;};I+ 122({1,,+;?/3n) - nQ I
n=O, I, "', N (47)

where fWn and rW" are the natural frequencies

of the nodal diameter mode for the forward and

backward traveling waves, respectively.

The critical speed is defined as the speed when

the natural frequency for the reversed traveling

wave is equal to zero. The critical speed with

nodal diameters, denoted by cQ", can be easily

calculated from Eq. (47) only when nZ-a"
- 1/2/3" is greater than zero:

and the critical speed defined in Eq. (48).

Let us now consider the case that both the

strains and internal forces are linearized. In this

case. the equation of the transverse deflection is

completely decoupled with that of the in-plane

deflection so the internal force terms, l!r and 110

(namely, (in and /3,J, disappear in the governing

Eq. (22). The natural frequencies are simplified

(50)

(49)

cS2n = -"w", n= I, 2, "', JV
n

fW,,:sWn+~IQ }

,w,,-I sW" nQ I
n=O, I, "', JV

Similarly, the critical speed is also simplified as

as

Figure 2 shows schematically the natural fre­

quencies with the spinning speed when the strains

remain nonlinear and the internal forces are

linearized. The difference between the frequencies

for the forward and reversed traveling waves is

equal to when while it is equal to 2nS2 when Os::

QS::cQ" while it IS equal to 2

/sw~,+ Q2 (a-;'-+;zz 13,1) when SF::>. .a: On the

other hand, the natural frequencies are shown in

Fig. 3 as functions of when both the strains and

internal forces linearized: in this case. the curves

(48)

c.Q
n

s{Jjn

H- a; - 1/2/3,;
1/Z - (1" ~ Jl2/3n >0
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Table I Material properties and dimensions of the

spinning disk.

erries and physical dimensions are given in Table

I except the inner radius which is given by O. 0325

m. The natural frequencies of the stationary disk

calculated by using the proposed approach are

compared with the exact solutions (Mote, 1970).

I he rt:wlh are summarized and compared in

Table 2, where the differences between these two

calculations ate less than 0.3% so the results from

the presented approach are acceptable.

Another verification is given by comparing the

become straight lines on the diagram of the natu­

ral frequencies versus the spinning speed.

To verify the proposed approach, consider an

example of a spinning disk whose material prop-

Fig, 2 Schematic di.igr.un of the natural frequencies
\'t:r'·:lIs the ~ri!llling speed when the ~tr:lins

rerrun nnn li ncu while the internal force;.; are

Mutcri.i l property [)Illlelhltln

Yo ungs modulus. E

!'nisso!l\ ratio, I'

\LhS density .i,

I hid ne-,-, II
Inner r.id i ux. II

Outer r.idi u«, h

h:; .5 M1';1

0.3

1200 Kg rn'

o.(l(l I ~ III

(i (Ii ·'·L' III

(I .lIh" III

Iinc.uized ( iI!

Fig, 3 Schematic diagram of the natural frequencies
versus the spinning speed when both the vtrai ns
and internal forn's .ire linearized I II 0).

(O.J),

(112)

Fig. 4 Diagram of the natural frequencies versus the
spinning speed.

Table 2 Comparison of the natural frequencies calculated by using the proposed method and the exact

solutions when ~2 (l (rad/sec).

f\lodc (0. iI) (0. 0) (0. J) (O. 2) (O. .1)

Proposed mcrhod 261.61 267.0:'i 29:'i.ID .,7.1.59

Exact solutions 261.53 266.~6 295.2h J72.n
-- -_.-'--'-

I-:tror(%) O,(U 0.0] 0.19 0.23

Table 3 Comparison of the critical speeds calculated by lbing the proposed method and Hutton's method

(rad-sec).
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Table 4 Natural frequencies of the stationary disk and the nondimensional parameters.

Mode (0, n) (0, 0) (0, I) (0,2) (0, 3)

sW n (radysec) 261.61 267.05 295.83 373.59

an 2.2343 2.2353 2.2373 2.2367

;3n 0.1508 0.1507 0.1504 0.1501
----~~--_._---

n2 _. all - n2/3n -2.2343 -1.3859 \.1611 5.4124
-------._-~ -----

critical speeds which are calculated with the

proposed method and Hutton's method

(H utton, 1987). The material properties and

dimensions are given by Table I. Comparison of

the critical speeds, shown in Table 3, leads to

acceptance of the proposed method even though

only the zero-nodal circle modes are chosen and

they are assumed as simple comparison functions.

Figure 4 shows the well-known diagram of the

natural frequencies versus the spinning speed of

the disk whose mechanical properties and dimen­

sions are given in Table I. As discussed before,

the dotted straight lines indicate the natural fre­

quencies when both the strains and internal forces

are linearized. In contrast, the solid curved lines

indicate the natural frequencies when only the

internal forces are linearized. The differences

between them are so large that the natural fre­

quencies expressed by the dotted straight lines are

not acceptable.

It is interesting to examine the nature of natural

frequency of the stationary disk and the non­

dimensional parameters. Table 4 shows numerical

values for sWn, am and /3" when the data of Table
I are used. It can be seen that the values of an and

/3" have very small variations for different num­

bers of the nodal diameters compared to sWn. It is

also noted that there exists no critical speed, if the

values of n2
- an - n 2/3n are less than or equal to

zero: see Fig. 4 where the natural frequencies

corresponding to (0, 0) and (0, I) modes do not

have a critical speed.

4. Conclusions

The governing equation for a spinning disk

without a transverse load is analytically derived

by using the variational formulation based upon

the Kirchhoff plate theory and von Karman strain

one. This approach is theoretically valid under

the following two assumptions. The first assump­

tion is that in-plane deflections are steady and
axisymmetric with respect to the spinning disk

center. The second one is that the strains are

nonlinear functions of the displacements while

the internal forces are linearized. In addition, the

natural frequencies and the critical speeds of a

freely spinning disk are examined with the natural

frequency of the stationary disk, the number of

nodal diameters, and the spinning speed.

In the future work, it is necessary to prove

whether the steady and axisymmetric in-plane

deflections are still valid or not even when trans­

verse loads are applied to a spinning disk. In

addition, it is interesting to investigate whether

the totally coupled nonlinear governing equations

can be obtained when either the strains or the

internal forces remains nonlinear.
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